Review article
Physics and astronomy
Ground-based gamma-ray astronomy: status and future
Coshare Science 02, 05 | Published 31 July 2024 | DOI: https://doi.org/10.61109/cs.202407.132
Cite this article
Copy
F. Aharonian, Ground-based gamma-ray astronomy: status and future, Coshare Science 02, 05 (2024).
Abstract

In this video article the author covers the history and current status of ground-based gamma-ray astronomy. The recent results in this field have brought important implications to various aspects in astrophysics, such as cosmic ray science and black holes and dark matters, and thus advanced our understanding of the dynamic non-thermal universe. The author also discusses the future prospects in this field, especially the possible imaging air Cherenkov telescopes in GeV energy range.

Keywords
gamma-rays
cosmic rays
Introduction
watch this part

Results and discussion
watch this part

Conclusions
watch this part

Declarations
The author declares no competing interests.
References

1. A.M. Hillas, Evolution of ground-based gamma-ray astronomy from the early days to the Cherenkov Telescope Arrays, Astropart. Phys. 43, 19 (2013). 

2. F. Aharonian, J. Buckley, T. Kifune et al., High energy astrophysics with ground-based gamma ray detectors, Rep. Prog. Phys. 71, 096901 (2008). 

3. F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi et al., Primary particle acceleration above 100 TeV in the shell-type supernova remnant RX J1713.7-3946 with deep HESS observations, Astron. Astrophys. 464, 235 (2007). 

4. F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi et al., Discovery of very-high-energy γ-rays from the Galactic Centre ridge, Nature 439, 695 (2006). 

5. F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi et al., An exceptional very high energy gamma-ray flare of PKS 2155–304, Astrophys. J. 664, L71 (2007). 

6. H.E.S.S. Collaboration, Resolving the Crab pulsar wind nebula at teraelectronvolt energies, Nat. Astro. 4, 167 (2020). 

7. Z. Cao, F.A. Aharonian, Q. An et al., Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources, Nature 594, 33 (2021).

8. H.E.S.S. Collaboration, The H.E.S.S. Galactic plane survey, Astron. Astrophys. 612, A1 (2018).

9. Z. Cao, F. Aharonian, Q. An et al., The first LHAASO catalog of gamma-ray sources, Astrophys. J. Suppl. Ser. 271, 25 (2024).

10. The LHAASO Collaboration, Z. Cao, F. Aharonian et al., Peta–electron volt gamma-ray emission from the Crab Nebula, Science 373, 425 (2021). 

11. LHAASO Collaboration, An ultrahigh-energy γ-ray bubble powered by a super PeVatron, Sci. Bull. 69, 449 (2024). 

12. LHAASO Collaboration, Z. Cao, F. Aharonian et al., A tera–electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst, Science 380, 1390 (2023). 

13. The LHAASO Collaboration, Very high-energy gamma-ray emission beyond 10 TeV from GRB 221009A, Sci. Adv. 9, eadj2778 (2023). 

14. T. Vieu and B. Reville, Massive star cluster origin for the galactic cosmic ray population at very-high energies, Mon. Not. R. Astron. Soc. 519, 136 (2023).

15. H.E.S.S. Collaboration, H.E.S.S. observations of RX J1713.7−3946 with improved angular and spectral resolution: evidence for gamma-ray emission extending beyond the X-ray emitting shell, Astron. Astrophys. 612, A6 (2018). 

16. J.A. Hinton and W. Hofmann, Teraelectronvolt astronomy, Annu. Rev. Astron. Astrophys. 47, 523 (2009). 

17. F. Aharonian, R.Z Yang, and E. de Oña Wilhelmi, Massive stars as major factories of Galactic cosmic rays, Nat. Astron. 3, 561 (2019). 

18. M.L. Ahnen, S. Ansoldi, L.A. Antonelli et al., A cut-off in the TeV gamma-ray spectrum of the SNR Cassiopeia A, Mon. Not. R. Astron. Soc. 472, 2956 (2017). 

19. G. Peron and F. Aharonian, Probing the galactic cosmic-ray density with current and future γ-ray instruments, Astron. Astrophys. 659, A57 (2022).

20. S. Gabici and F.A. Aharonian, Searching for galactic cosmic-ray pevatrons with multi-TeV gamma rays and neutrinos, Astrophys. J. 665, L131 (2007).

21. I. Braun, O. Bolz, C. van Eldik et al, Localising the HESS Galactic Centre point source, J. Phys. Conf. Ser. 110, 062003 (2008). 

22. HESS Collaboration, Acceleration of petaelectronvolt protons in the Galactic Centre, Nature 531, 476 (2016). 

23. F. Aharonian, H. Ashkar, M. Backes et al., A deep spectromorphological study of the γ-ray emission surrounding the young massive stellar cluster Westerlund 1, Astron. Astrophys. 666, A124 (2022). 

24. F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi et al., Energy dependent γ-ray morphology in the pulsar wind nebula HESS J1825–137, Astron. Astrophys. 460, 365 (2006).

25. M. Tsirou, Y. Gallant, R. Zanin et al., VHE gamma-ray study of the composite SNR MSH 15-52 with H.E.S.S, arXiv:1709.01422 (2017).

26. I. Sushch, The Galactic sky through H.E.S.S. eyes, arXiv:1604.00229v1 (2016).

27. H.E.S.S. Collaboration, HESSJ1818–154, a new composite supernova remnant discovered in TeV gamma rays and X-rays, Astron. Astrophys. 562, A40 (2014). 

28. B. Olmi, Evolved pulsar wind nebulae, Universe 9, 402 (2023).

29. F.A. Aharonian, S.V. Bogovalov, and D. Khangulyan, Abrupt acceleration of a ‘cold’ ultrarelativistic wind from the Crab pulsar, Nature 482, 507 (2012). 

30. F.A. Aharonian and S.V. Bogovalov, Exploring physics of rotation powered pulsars with sub-10 GeV imaging atmospheric Cherenkov telescopes, New Astron. 8, 85 (2003). 

31. The H.E.S.S. Collaboration et al., Discovery of a radiation component from the Vela pulsar reaching 20 teraelectronvolts, Nat. Astron. 7, 1341 (2023). 

32. F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi et al., 3.9 day orbital modulation in the TeV γ-ray flux and spectrum from the X-ray binary LS 5039, Astron. Astrophys. 460, 743 (2006).

33. T. Takahashi, T. Kishishita, Y. Uchiyama et al., Study of the spectral and temporal characteristics of X-ray emission of the gamma-ray binary LS 5039 with Suzaku, Astrophys. J. 697, 592 (2009).

34. C.D. Rho, H. Zhou, and S. BenZvi, Discovery of the TeV emission from the jetinteraction regions of SS 433 with HAWC, arXiv:1908.06429 (2019).

35. H.E.S.S. Collaboration, Acceleration and transport of relativistic electrons in the jets of the microquasar SS 433, Science 383, 402 (2024). 

36. R.V. Lobato, J.G. Coelho, and M. Malheiro, Ultra-high energy cosmic rays from white dwarf pulsars and the Hillas criterion, J. Phys. Conf. Ser. 861, 012005 (2017). 

37. F.A. Aharonian, A.A. Belyanin, E.V. Derishev et al., Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics, Phys. Rev. D 66, 023005 (2002).

38. G.F. Abbey, J. Simfukwe, P.C. Simpemba et al., Refinement of the proposed gamma-ray burst time delay model, IJAA 14, 120 (2024). 

39. F.A. Aharonian, A.K. Konopelko, H.J. Völk et al., 5@5 – a 5 GeV energy threshold array of imaging atmospheric Cherenkov telescopes at 5 km altitude, Astropart. Phys. 15, 335 (2001). 

40. S. Celli, F. Aharonian, and S. Gabici, Spectral signatures of PeVatrons, Astrophys. J. 903, 61 (2020). 

Rights and permissions
Open Access This video article (including but not limited to the video presentation, related slides, images and text manuscript) is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Comments
Comment
Sections